12 resultados para Hardy-Weinberg

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The cyclin D1 (CCND1) A870G gene polymorphism is linked to the outcome in patients with resectable non-small cell lung cancer (NSCLC). Here, we investigated the impact of this polymorphism on smoking-induced cancer risk and clinical outcome in patients with NSCLC stages I-IV. METHODS: CCND1 A870G genotype was determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (RFLP) of DNA extracted from blood. The study included 244 NSCLC patients and 187 healthy control subjects. RESULTS: Patient characteristics were: 70% male, 77% smokers, 43% adenocarcinoma, and 27% squamous cell carcinoma. Eighty-one percent of the patients had stages III-IV disease. Median age at diagnosis was 60 years and median survival was 13 months. Genotype frequencies of patients and controls both conformed to the Hardy Weinberg equilibrium. The GG genotype significantly correlated with a history of heavy smoking (>or=40 py, P=0.02), and patients with this genotype had a significantly higher cigarette consumption than patients with AA/AG genotypes (P=0.007). The GG genotype also significantly correlated with tumor response or stabilization after a platinum-based first-line chemotherapy (P=0.04). Survival analysis revealed no significant differences among the genotypes. CONCLUSION: Evidence was obtained that the CCND1 A870G gene polymorphism modulates smoking-induced lung cancer risk. Further studies are required to explore the underlying molecular mechanisms and to test the value of this gene polymorphism as a predictor for platinum-sensitivity in NSCLC patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic alcohol consumption is a major risk factor for the development of chronic pancreatitis. However, chronic pancreatitis occurs only in a minority of heavy drinkers. This variability may be due to yet unidentified genetic factors. Several enzymes involved in the degradation of reactive oxidants and xenobiotics, such as glutathione-S-transferase P1 (GSTP1) and manganese-superoxide dismutase (MnSOD) reveal functional polymorphisms that affect the antioxidative capacity and may therefore modulate the development of chronic pancreatitis and long-term complications like endocrine and exocrine pancreatic insufficiency. Two functional polymorphisms of the MnSOD and the GSTP1 gene were assessed by polymerase chain reaction and restriction fragment length polymorphism in 165 patients with chronic alcoholic pancreatitis, 140 alcoholics without evidence of pancreatic disease and 160 healthy control subjects. The distribution of GSTP1 and MnSOD genotypes were in Hardy-Weinberg equilibrium in the total cohort. Genotype and allele frequencies for both genes were not statistically different between the three groups. Although genotype MnSOD Ala/Val was seemingly associated with the presence of exocrine pancreatic insufficiency, this subgroup was too small and the association statistically underpowered. None of the tested genotypes affected the development of endocrine pancreatic insufficiency. Polymorphisms of MnSOD and GSTP1 are not associated with chronic alcoholic pancreatitis. The present data emphasize the need for stringently designed candidate gene association studies with well-characterized cases and controls and sufficient statistical power to exclude chance observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: As only a minority of alcoholics develop cirrhosis, polymorphic genes, whose products are involved in fibrosis development were suggested to confer individual susceptibility. We tested whether a functional promoter polymorphism in the gene encoding matrix metalloproteinase-3 (MMP-3; 1171 5A/6A) was associated liver cirrhosis in alcoholics. METHODS: Independent cohorts from the UK and Germany were studied. (i) UK cohort: 320 alcoholic cirrhotics and 183 heavy drinkers without liver damage and (ii) German cohort: 149 alcoholic cirrhotics, 220 alcoholic cirrhotics who underwent liver transplantation and 151 alcoholics without liver disease. Patients were genotyped for MMP-3 variants by restriction fragment length polymorphism, single strand confirmation polymorphism, and direct sequencing. In addition, MMP-3 transcript levels were correlated with MMP-3 genotype in normal liver tissues. RESULTS: Matrix metalloproteinase-3 genotype and allele distribution in all 1023 alcoholic patients were in Hardy-Weinberg equilibrium. No significant differences in MMP-3 genotype and allele frequencies were observed either between alcoholics with or without cirrhosis. There were no differences in hepatic mRNA transcription levels according to MMP-3 genotype. CONCLUSIONS: Matrix metalloproteinase-3 1171 promoter polymorphism plays no role in the genetic predisposition for liver cirrhosis in alcoholics. Stringently designed candidate gene association studies are required to exclude chance observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence, the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association (STREGA) studies initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information into the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and issues of data volume that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enteric Escherichia coli infections are a highly relevant cause of disease and death in young pigs. Breeding genetically resistant pigs is an economical and sustainable method of prevention. Resistant pigs are protected against colonization of the intestine through the absence of receptors for the bacterial fimbriae, which mediate adhesion to the intestinal surface. The present work aimed at elucidation of the mode of inheritance of the F4ad receptor which according to former investigations appeared quite confusing. Intestines of 489 pigs of an experimental herd were examined by a microscopic adhesion test modified in such a manner that four small intestinal sites instead of one were tested for adhesion of the fimbrial variant F4ad. Segregation analysis revealed that the mixed inheritance model explained our data best. The heritability of the F4ad phenotype was estimated to be 0.7±0.1. There are no relations to the strong receptors for variants F4ab and F4ac. Targeted matings allowed the discrimination between two F4ad receptors, that is, a fully adhesive receptor (F4adRFA) expressed on all enterocytes and at all small intestinal sites, and a partially adhesive receptor (F4adRPA) variably expressed at different sites and often leading to partial bacterial adhesion. In pigs with both F4ad receptors, the F4adRPA receptor is masked by the F4adRFA. The hypothesis that F4adRFA must be encoded by at least two complementary or epistatic dominant genes is supported by the Hardy-Weinberg equilibrium statistics. The F4adRPA receptor is inherited as a monogenetic dominant trait. A comparable partially adhesive receptor for variant F4ab (F4abRPA) was also observed but the limited data did not allow a prediction of the mode of inheritance. Pigs were therefore classified into one of eight receptor phenotypes: A1 (F4abRFA/F4acR+/F4adRFA); A2 (F4abRFA/F4acR+/F4adRPA); B (F4abRFA/F4acR+/F4adR-); C1 (F4abRPA/F4acR-/F4adRFA); C2 (F4abRPA/F4acR-/F4adRPA); D1 (F4abR-/F4acR-/F4adRFA); D2 (F4abR-/F4acR-/F4adRPA); E (F4abR-/F4acR-/F4adR-).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protein P29 is a potential serological marker for post-treatment monitoring of cystic echinococcosis (CE) especially in young patients. We now have demonstrated that P29 is encoded in the Echinococcus genus by a single gene consisting of 7 exons spanning 1.2 kb of DNA. Variability of the p29 gene at inter- and intra-species level was assessed with 50 cDNA and 280 genomic DNA clones isolated from different E. granulosus s.l. isolates (E. granulosus sensu stricto (G1), E. equinus (G4), E. ortleppi (G5), E. canadensis (G6), E. canadensis (G7) and E. canadensis (G10)) as well as four E. multilocularis isolates. Scarce interspecies polymorphism at the p29 locus was observed and affected predominantly E. granulosus s.s. (G1), where we identified two alleles (A1 and A2) coding for identical P29 proteins and yielding in three genotypes (A1/A1, A2/A2 and A1/A2). Genotypic frequencies expected under Hardy-Weinberg equilibrium revealed a high rate of heterozygosity (47%) that strongly supports the hypothesis that E. granulosus s.s. (G1) is predominantly outbreeding. Comparative sequence analyses of the complete p29 gene showed that phylogenetic relationships within the genus Echinococcus were in agreement with those of previous nuclear gene studies. At the protein level, the deduced P29 amino acid (AA) sequences exhibited a high level of conservation, ranging from 97.9% AA sequence identity among the whole E. granulosus s.l. group to 99.58% identity among E. multilocularis isolates. We showed that P29 proteins of these two species differ by three AA substitutions without implication for antigenicity. In Western-blot analyses, serum antibodies from a human CE patient infected with E. canadensis (G6) strongly reacted with recombinant P29 from E. granulosus s.s. (G1) (recEg(G1)P29). In the same line, human anti-Eg(G1)P29 antibodies bound to recEcnd(G6)P29. Thus, minor AA sequence variations appear not to impair the prognostic serological use of P29.